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Summary. This paper presents a theoretical model based on wave mechanics for the reflection of focused 
and parallel ultrasonic beams from a liquid-solid interface. The incident beam is defined by a Gaussian 
velocity distribution along a plane emitter, and the reflected beam is described through its pressure field 
by means of asymptotic analysis based on the short wave hypothesis. In the case of a focused reflected 
beam, nonspecular phenomena are observed for any angle of incidence. However, in the case of a parallel 
reflected beam, nonspecular reflection only occurs if the incidence of the beam is in the neighborhood of 
the Rayleigh angle. The objective of this paper is to discuss in detail the physical mechanisms of nonspe- 
cular reflection for both focused and unfocused beams and to provide an understanding of the complex 
phenomena related to nonspecular reflection of ultrasonic beams, which plays an important role in scan- 
ning acustic microscopy for materials nondestructive characterization. 

1 Introduction 

Experimental studies of  the reflection of  a parallel acoustic beam incident on a plane water- 

metal [1] interface have shown that, for an incidence at or near the Rayleigh angle, the 

reflected profile exhibits an unexpectedly large width, a silent or minimum intensity zone and 

a lateral shift of  the maximum intensity. The general features of  the phenomenon have been 

described [2] as the result o f  the superposition of  two parts: the usual geometric reflected 

beam and the acoustic field generated by reradiation of  a leaky Rayleigh wave. Numerical cal- 

culations [3] of  the profiles of  the reflected beam yield similar results. An extension of  the 
theory has been proposed using asymptotic analysis [4]. 

The interest in using ultrasonic focused beams for nondestructive evaluation (NDE) appli- 

cations, particularly in the case of  the reflection acoustic microscope, which is based on the 

principle of  interaction of  specular reflected waves with surface waves, has led to many recent 

studies of  the reflection of  focused beams. The theoretical model [5] deals with the reflection 
of  convergent beams from a liquid-solid interface at Reyleigh angle incidence using the 

hypothesis of  a well-collimated beam. The location of  the focal point of  the reflected beam 

was thus estimated, and both the lateral and axial displacements were predicted using an 
approximation for the reflected acousitc field. The axial displacement, which was predicted in 

the model [5], was imaged using schlieren photography [6]. Both the axial and lateral displace- 
ments were quantified experimentally [7] using ultrasonic imaging of  the reflected beam. The 
developed model [5] has a number of  advantages such as simplicity and amenability to an ana- 

lytical solution, but it is difficult to apply it in its present form to beams having a more pro- 
nounced convergence, or to beams having an incidence other than the Rayleigh angle. 

Further, in the model [5] there is no notion of  caustic of  the incident or the reflected beams; 
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the only information about the distorted reflected field is the displacement of the focal point. 
Moreover, there is no physical explanation for the observed nonspecular phenomena; the 
model [5] does not differentiate this phenomenon from the one observed in case of the reflec- 
tion of a parallel beam, where the leak in the liquid of a Rayleigh wave is responsible for the 
distortion of the reflected beam. 

In a preceding paper [8] the previous theories were extended to include: (i) The incident 
beam was defined by its normal velocity distrubution along a plane emitter placed in the fluid, 
and the notion of the caustic of the acoustic beam was introduced. (ii) It was observed that 
for an incidence near the Rayleigh angle, where the phase of the reflection coefficient varies 
abruptly, the asymptotic method of steepest descent [9]-[11] (which was used in the case of 
the reflection of a parallel beam [4]) was not applicable. (iii) An asymptotic evaluation of the 
reflected pressure field was obtained for all angles of incidence and in particular for the Ray- 
leigh angle. The asymptotic analysis, based on the short-wave assumption, was performed by 
means of the stationary phase method [9], [10], which was applied to the spatial Fourier repre- 
sentations. This allows one to explore the reflected pressure field in a region which is not lim- 
ited to the fluid-solid interface alone, and thus to obtain a spatial representation of the 
reflected focused beam. (iv) Distortion of the caustic of the reflected beam was observed in 
the neighborhood of the Rayleigh angle incidence, including lateral and axial displacements 
of the focal point of the beam. At the Rayleigh angle incidence, the lateral displacement is 
maximum. At this particular angle the axial displacement is negligible in comparison to the 
lengh of the focal spot, and therefore it is not detectable experimentally. Moreover, other non- 
cular phenomena were predicted for an incidence near the Rayleigh angle. These nonspecular 
phenomena include spreading of the reflected beam, asymmetric variation of the acoustic 
pressure about the axis, and curvature of the acoustic axis. 

The goal of this paper is to provide a physical explanation of nonspecular phenomena and 
to compare the mechanisms of nonspecular reflection between focused and parallel beams. It 
is shown that the nonspecular reflection of a focused beam is due to the generation of a Ray- 
leigh surface wave and occurs at any angle of incidence. For an incidence near the Rayleigh 
angle, the whole acoustic axis and a part of the caustic are distorted, including axial and lat- 
eral displacements of the focal point; for another incidence, a different part of the reflected 
beam will be modified. In this case, the presence of the Rayleigh pole of the reflection coeffi- 
cient (singularity in the complex plane related to a leaky Rayleigh wave), does not affect the 
reflected beam. In other words, the reradiation of a leaky Rayleigh wave in the liquid, which 

was the main cause of nonspecular reflection of a parallel beam, is very low. 

2 Theory of nonspecular reflection of a Gaussian parallel beam 

2.1 Modeling the reflected parallel beam 

Consider a Gaussian parallel bounded acoustic beam of characteristic width "a", incident on 
a plane liquid-solid interface at an angle 0~. The normal velocity distribution along the emit- 
ting plane (which is defined by zi = 0) is given by: 

v~(xi, O) = V0e (x~/a)~e-i~t, (1) 

where V0 denotes the central magnitude of v,~. 
In Fig. l, the liquid-solid interface is defined by z = O. The half-space z < 0 is filled with a 

liquid with mass density Q and sound velocity c (/~ - ~ /c  denotes the wave number in the 
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Fig. 1. Configuration of the problem and coordinate 
definition 

liquid). The half-space z > 0 is an elastic solid with mass density c9~ and longitudinal and 
transversal wave velocities csc and cs7, respectively. 

The incident pressure field can be described as a plane-wave superposition of  a Fourier 
integral with respect to the space variable 2~ = xi/a: 

+oo 

~vok~ f i ~(k~)~S,(k~)d~ (2) 

- o o  

with 

(~k~i + ~z i )  ~ (3) 
i 

where the bar denotes nondimensional  parameters and k~{ is a function of  k~{ through the dis- 
persion relation. 

The reflected pressure expressed in the system (x', z ~) is: 

+ o o  

S.es(~,,Z ) _ e~�89 S R(~,) e(~)~S,(<, ) d~, (4) 2 ~ k~, 
--oo 

with 
~2  
k x, z 

f~(k~') = - ~ + ~ a  (Aik~, + Bike,), (5 )  

where Ai and Bi are defined by the expressions: 

d 
Ai = x' cos 20i + 2/sin 20i, /~i : x' sin 201 - ~' sin 20i + - -  (6) 

cos 0i 

R(k~,), in Eq. (4), denotes the plane-wave reflection coefficient [4], which is expressed in terms 
of  the wave -number /~ ,  associated to the direction of  the emitter. The reflection coefficient 
has a complex pole corresponding to the generalized Rayleigh wave, shown later in Eq. (21). 
At the Rayleigh angle, 0R, this pole is purely imaginary: 

]~, = , de/~ 

where aR is proportional  to ~)/~s. 
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2.2 Application of the asymtotic method of steepest descent for an incidence at the Rayleigh 
angle 

Assuming a parallel beam with width large compared to the wave-length (short wave hypoth- 
esis: ka > >  1), the integral in Eq. (4) can then be evaluated asymptotically about the saddle- 

point, 7, of the function fi. [4]. The single complex saddle-point, which corresponds to the 
single direction of propagation of rays, is given by the expression: 

Assuming that the pseudo-cooridinates A1 and/~i are of order l, an analytical approximated 
expression for the saddle-point is obtained: 

= O (9) 

The saddle-point 7 is located near the imaginary axis of the complex plane kj .  
The study of the topographic situation in the complex plane ~, ,  shown schematically in 

Fig. 2, enabled the asymptotic evaluation of the integral in Eq. (4) by means of the steepest- 
descent method [9], [10], and an analytical expression of the reflected pressure field at any 
point of the physical space was obtained [4]: 

Pref ( x', z/) = - LocVoe- fl~2ei(~a) ~ 

+ ~cVoe-A~2ei(~)a~ 2 cos0R exp } ~ o s ~  

�9 erfc  \ 2 cos 0~ J + O . (10) 

According to Eq. (10), the reflected field depends only on two parameters, c~R(ka) and 

Ai = (2 + z tan 0R) cos 0R, and is composed of two parts: (i) a first part that is purely geome- 
trical, and (ii) a second part that contains non-geometrical terms corresponding to a leaky 
Rayleigh wave. The superposition of these two parts explains the nonspecular reflection of a 
parallel beam, which includes the spreading of the reflected beam, the presence of a null zone, 
and the displacement of the maximum of the reflected energy. 

~m(~x ) 

" . Re[ f r  (kx  ')] > R e  fr ('{)] 1 

- ' -  I n ~ _n r ' - -  -~ -;T L t //!: 
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_ _ N \  

Fig. 2. Topographic situation in the complex 
@-plane in the case of a parallel bearn. Loca- 
tion of the pole and the saddle-point for an 
incidence at the Rayleigh angle 
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with 

3 Nonspecular reflection of a Gaussian focused beam 

3.1 Modeling the reflected focused beam 

Consider a focused ultrasonic beam, incident on a plane liquid-solid interface at an angle 0i, 
(as shown in the configuration of  Fig. 1). We assume a Gaussian profile of the normal velocity 
of  particles along the emitting plane, zi = 0, 

;~ .  2 . . 2 . 

v~(xi,O) = Voe-(@ e ~ksmO~ (11) 

where 0o is the half angle of the convergent beam. 
The incident pressure field is given by a Fourier integral [12]: 

+ ;  e - [ ~ ] =  ei(ka)fi(k~i)dkxi (12) ~cV0 v / ~  

O O  

+ (13) 
A( xi) - 4 s in00  

The short wave hypothesis allows one to evaluate asymptotically the integral in Eq. (12) 
about the real saddle-points, %, of the phase function fi (which is defined as the roots of  fi'): 

P/~(a~i,2i) = e o n s t .  ~(term dependin 9 on % ) ,  (n = 1) or (n = 1, 2~ 3). (14) 
n 

The reader can refer to [13] for detailed equations. 
Equation (14) can be interpreted in terms of rays. The propagation around a point 

(gem, ~i0) can be locally assimilated to a plane wave of  wave number: 

[k%,k 1~-%21, (n 1) or ( n = 1 , 2 , 3 ) .  

In these conditions, the direction of  propagation is given by the straight line, which is defined 
by the equation: 

D ( % ) :  (xi - 2q0)% - (zi - ~i0)X/1 _ % 2  = 0. 

The envelope of  the set of  all such lines defines the caustic of the field and represents the 
values of 2i and 5i, for which two saddle-points are coincident. The mathematical expression 

Fig. 3. The focal zone and the caustic of an incident beam 
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of  the caustic can be obtained from the equations fi / = f / '  = 0. The caustic divides the physi- 
cal space into two regions (shown schematically in Fig. 3): 

(i) Region of a single stationary point, which is found outside the focal zone, where only a 
single ray passes through each physical point, and therefore, Eq. (14) has only one term. (ii) 
Region of three stationary points, which corresponds to the focal zone, where three rays pass 
through each point, two of these rays are tangent to the "near" branch of the caustic, and the 
third ray is tangent to the "further" branch of  the caustic, therefore, Eq. (14) has three terms. 

In order to evaluate the reflected field, it is convenient to write the continuity conditions in 

the (x, z) coordinate system, which it is done by multiplying the integrand of Eq. (12) by the 
plane-wave reflection coefficient for a liquid-solid interface, R(/~x), then to express the equa- 
tions in the (x', z ~) coordinate system. Hence, the reflected pressure field is given by: 

o ~ v  ~ +~  _ [l~ coso,-~sino, i 2] 
_ . f L nsi~200 J ei(~)L(~)dkx (15) F~s(~ ,~) ~ ~ ~ ( ~ )  e ~ 

0(3 

with 

f,,(~) = (f~ eo~0~ - ~ i n  0~) ~ 
4sin 00 T(X--dtanOi)~x--(d--z,)~z. (16) 

With the assumption 0/0~ < <  1, which implies that the density of  the liquid is much smaller 
than the density of  the solid and is satisfied in most  cases, the relection coefficient has a com- 
plex pole, @, in the ~ -p l ane  that can be written in the form: 

~ = ~R + i ~ ,  o~R < <  1, (17) 

where ~R = sin OR (OR is the Rayteigh angle) and c~R is proport ioal  to #/0..  
For  an incidence near the Rayleigh angle, the reflection coefficient may be written in an 

approximated form, which is obtained by a Laurent series expansion about  the Rayleigh sin- 
gularity: 

~x  - ,% 
R(~.)  - k~ - ~ /  ( is)  

In the case of  absence of  losses in the medium, the zero,/~0, of  the reflection coefficients is the 
complex conjugate, k~, of  the pole. The function /c~ = X/1 - ]%2 has two branch points at 
/~x = • Figure 4 shows the real integration path  in the coordinate system (x, z); the dotted 
line represents the path  in the second plane of  Riemann. The physical meaning of  that  path 
can be understood by looking at Fig. 5. In Fig. 5, the line D, which corresponds to 
(k~,/~) ---- (1,0), separates the physical half-space zi > 0 into two regions: 

- '^^ , . . . .  . . . . . .  ~_ Re(kx, ) VVVVV 'A I  ~ VVVVVV 

-1 -cosO I -sinO ~ sinO I cosO I +1 

Fig. 4. Initial integration path for the acoustic pressure integral representation, in the system (x, z) 
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Fig. 6. Location of the pole of the reflection coefficient 
in the complex (k~,, k~,) plane, for an angle of incidence 
different from the Rayleigh angle (]~R, # 0). The rectan- 
gle indicates the area of influence of the Rayleigh pole 

Region (1): in which Re (kz) < 0, with propagation along the z negative (part of the path 
shown as a dotted curve in Fig. 4, situated in the second plane of Riemann). 

Region (II): in which Re (/~) > 0, with propagation along the z positive (part of the path 
shown as a continuous curve in Fig. 4, situated in the first plane of Riemann). 

Finally, the reflected pressure field expressed in the (x', z') coordinate system is given by: 

_ ~ c V o  ~ R(~c') - [ ~ ]  e ffka)L(G') d/c:e (19) 
- c o  

with 

4 sin 00 

where Ai and/) i  are defined in Eq. (6). 

(20) 

In the coordinate system (x ~, z'), the Rayleigh pole is given by the expression: 

- . ~ R  

kp, = sin (0z - OR) + z co-~R cos (Or - OR) (21) 

with/~R' = sin (0z - OR) denoting the real part of this pole (Fig. 6.) 
For the special case of the Rayleigh angle incidence (0i = OR), the pole becomes purely 

imaginary, as shown in Eq. (7). In the neighborhood of the pole, the reflection coefficient 
R(l~x,) is given by an approximated expression: 

- (22) R ( s  . . . .  

G,-G, 

where ]~, is the complex conjugate of the pole ~p,.This approximation, with 6~R << 1, is valid 
in a domain of the k~,-plane that includes a part of the real axis. 

The reflection coefficinet can always be expressed in phase and modulus terms: 

R(s  = ,(kx,) ~ ( ~ ' )  (23) 

Figure 7 shows the modulus, p(fCx,), and the phase, W(k~,), of the reflection coefficinet for 
a water-aluminum interface. Using the approximation given in Eq. (22) it can be concluded 
that the modulus of the reflection coefficient, in the neighborhood of the Rayleigh pole, tends 
toward infinity, whereas the phase is regular as long as Re (/~,) = 0. 
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coefficient for a liquid-solid plane interface 

3.2 Asymptotic analysis 

Assuming that the characteristic width of the acoustic beam "a" is large compared to the 
emission wavelength • = 2~r/k(ka >> 1), the reflected pressure field, given by Eq. (19), may 
be evaluated by means of an asymptotic method. In order to evaluate asymptotically the inte- 
gral in Eq. (19), the reflection coefficient will be represented in terms of modulus and phase, 
and the phase part will be regrouped with the function ft. Next, it will be shown that the 
straightforward steepest descent method is not applicable in the case of a reflected focused 
beam because it is not uniformly valid in the neighorhood of the Rayleigh angle, and there- 
fore, the asymptotic method of stationary phase will be used. 

Assume that the integral in Eq. (19) can be evaluated analytically by applying the steepest 
descent method, hence, the asymptotic expansion for the reflected field, Eq. (19), at order 2 is 
given by [13]: 

Pr~f(2', 5') 2 ~ ei~/(~") ikaf"(%) q(%) 

+4(ka) 3 / ~  \ f"(%OJ /(4)('7n) 3 ~ ] q(%) 

2if"(%) ( 2i ~ U2 / 2i "~a/2" ]} 1 ) 

where 

.~]-_ %2 

The subscript "n" denotes summation for the real saddle-points (n = 3 for points inside the 
caustic of the reflected beam and n = 1 for points outside the caustic). 

Equation (24) has two terms of the order (ka) -1/z and (ha) a/2 (terms of the order (ka)-5/2 
or smaller are omitted), which contain the bounded functions q(%), R(%), f"(%),  f " (%) .  The 
second term of the asymptotic expansion (24) contains the function q'(%), which, after expan- 
sion of the reflection coefficient in terms of phase and modulus, can be developed as: 

q'(>0 + terms of order 1. (25) 

90 
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For an incidence in the neighborhood of the Rayleigh angle, as it is discussed before, the 
phase of the reflection coefficient varies repidly, hence, the derivative of the phase reaches 
high levels. This is the case where at least one saddle-point verifies the following condition: 

Ig/(%)l 1 
. ( 2 6 )  

Therefore, the second term of the expansion (24) may become comparable to, or even greater 
than, the first one. In this case, the saddle-point method cannot be used because it is not uni- 
formly valid near the Rayleigh angle. 

The consition illustrated in Eq. (26) corresponds to: 

1 ,  ( 2 7 )  ha 

where h~, satisfies: 

- < <  c ( 2 8 )  

with c a small parameter that depends on Q~/~. 
The function ~'(hx,) is bounded by ~'(/~i~,), which is of the order ~b/~o, so the condition 

(28) implies that: 

( k a ) ( ~ )  < < 1 .  (29) 

In order to apply an asymptotic method and be able to describe the nonspecular phenom- 
ena, it is therefore necessary to express the reflection coefficient in terms of phase and modu- 
lus and to regroup the phase with the function ft.: 

~(h:~,) (30) 

However, the function ]~, being an argument function is not holomorphic. So, the steepest 
descent method cannot be applied in the case of the reflected field, since this asymptotic 
method is based on the Cauchy theorem and is only applicable to holomorphic functions. 
However,/~, may be assumed to be real, so, considering the integration on the real axis where 
]~ is analytic, the integral in Eq. (19) may be evaluated by applying the asymptotic method of 
stationary phase. 

The principle of stationary phase asserts, that, as ha -+ oc, the dominant terms in the 
asymptotic expansion of the integral in Eq. (19) (where ]~ (~,) is real) arise from the immedi- 
ate neighborhood of the points at which the phase (ha)it(h,:,) is stationary. Assuming that the 
coefficients i]i and B i in the functions ];. are of order 1, the reflected pressure is given by [8]: 

i(ha) 
exp 

[4 sin 2 00 + 4 sin 00 J 

i -2sinOo]/ '(~) "~[1-'~ 2 

�9 exp[i(ha)(~nAi+~-~,2~2Bi)]  + O  ( ~ )  , (31) 

where % are the real roots of the equation ] / =  0, and (n = 1) or (n = 1, 2, 3), depending on 
the location of the point (~0', z0~), whether it is situated outside or inside the focal zone of the 
reflected beam, respectively. 



36 T.E. Matikas 

4 Mechanism of nonspecular phenomena 

4.1 Case o f  a focused reflected beam 

Figure 6 shows the location of the pole of the reflection coefficient, which is given by Eq. (21) 
in the k~:, complex plane for an incidence of the beam different than the Rayleigh angle (/~n, 
denotes the real part of the pole). For the Rayleight angle incidence, hR, = 0, the pole becomes 
purely imaginary as shown in Eq. (7). In Fig. 6, the rectangle around/~R' indicates the "influ- 
ence area" of the Rayleigh pole, in other words the influence area of cp', such as defined in 
Eq. (28). The condition (26) is valid inside this area. Depending on the location of the points 
of interest in the reflected field (inside or outside the reflected focal zone which is limited by 
the caustic) two different cases may occur depending on the number of stationary points of 
the function it. For points outside the focal zone, only one statioary point exists representing 
one ray, and corresponds to the single real root of the equation fr '  = 0. For points inside the 
focal zone, three stationary points exist representing three different rays, and correspond to 
the existence of three real root of the equation ] , / =  0. Figure 8 shows examples of the loca- 
tions of physical points (shown in Fig. 8a) and the corresponding saddle-points (shown in 
Fig. 8 b -  8f). It must be noticed that when Ai changes its sign, the location of the correspond- 

ing saddle-points will be reversed with respect to the imaginary axis. For example, to the 
point D2 located outside the focal zone for which A~ < 0, correspond two complex saddle-points 
71 amd 72 with positive real parts and one real saddle-point ~/~ < 0 (shown in Fig. 8f), whereas to 
the point D3 located outside the focal zone for which ~]i > 0 correspond two complex saddle- 
points ~/1 and 72 with negative real parts and one real saddle-point 73 > 0 (shown in Fig. 8g). 

The fundamental hypothesis here implies that, if at least one stationary point is situated 
inside the "influence area" of the Rayleigh pole (in other words, if at least one ray is incident 
at an angle near the Rayleigh angle), the generation of a Rayleigh surface wave will be accom- 

Fig. 8a. Location of various physical points in respect to the caustic of the focused beam: 
Point F0: focal point 
Point Do: located on the axic (Ai 0) of the focused beam, inside the focal zone 
Point DI: located on the caustic of the focused beam, with A~ < 0 
Point E0: located on the axic (Ai - 0) of the focused beam and outside the focal zone 
Point D2: located outside the focal zone, with Ai < 0 
Point Da: located outside the focal zone, with Ai > 0 
The position of the corresponding saddle-points (complex roots of f / )  is shown in Fig. 8b 8g 
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3'1, 3'2, with positive real parts and one real saddle-point, % < 0, which correspond to the physical point 
D2; g Two complex saddle-points, 3% 72, with negative real parts and one real saddle-point, ")'a > 0, which 
correspond to the physical point D3 

panied by a small displacement of  the stationary point(s) of  the specular beam, which trans- 
lates to a small displacement of  the geometrical reflected ray(s). This hypothesis leads to the 

assumption that the derivative of  the second term in Eq. (30) has a very small value compared 

to the derivative of  the first term. Using this assumption, a relation between specular and non- 
specular stationary points can be finally obtained: 

% = "7~ - k a  e '  (32) ~ , , ( % ) = % -  , 

+ T -  

where e' is a small parameter. 
An immediate observation based on Eq. (32) is that, to any point of  the "specular reflected 

beam" with coordinates (Ai0,/3i0), it can be associated an "image point" which belongs to the 

"nonspecular reflected field" with coordinates (-A~0, t)i0). It can also be observed that the 
points of  the "specular reflected beam" are equivalent to the points of  the "incident beam" 
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(according to Eqs. (13) and (20) the corresponding stationary points are the same). Using the 
same general procedure, a point on the nonspecular caustic of the reflected beam can be calcu- 
lated from the corresponding point on the specular caustic. 

The specular caustic is defined by f/== f / =  0, where the function f~ is given by Eq. (20), 
and the points of the specular caustic (Ai0, Bi0) satisfy the equation: 

~13/2 ~3/2=( 1 ~a/2 
. ( 3 3 )  

Similarly, the nonspecular cat~stic is defined by ] / =  ]'/' = 0, where the function f,. is given 
by Eq. (30), and the points (){0,/)i0) of the nonspecular reflected caustic satisfy the equation: 

where M and N are defined by the explicit expressions given in Eq. (36). 
Using the equations f / =  0, f / '  = 0, ] / =  0, .f/' = 0, and by expanding the derivative of 

the phase of the reflection coefficient ~'(k~), which is contained in ]<, about the saddle-points 
% the following expressions are obtained: 

)i0 = -<:o - M - N% a , 
: 1) or  : 1 , 2 ,  3)  ( 3 5 )  

}iO ---/)io + N (1  - %2)3/2, 

where 

m --~=1 ~a and N = -m 77-'{.= ka (36) 

"m" denotes the number of stationary points in the neighborhood of/~R~. 
Using Eq. (35) and for a given point on the specular caustic, the coordinates of the corre- 

sponding point of the nonspecular reflected caustic can be calculated. 
Finaly, the position of the nonspecular point ( ] / =  ] / '  = f / "  = 0) can be calculated with 

respect to the specular focal point (which is obtained from the equations ft.' = f / '  = f / "  = 0): 

- -  s  : t? o ka ka (37) 

with -4m--0 and /)io-- 1 
2 sin 0o " 

Hence, the lateral, L, and axial, A, displacements of the focal points can be quantified: 

L -  ~d(0) and A =  p"(0) ka /~a (as) 

From the above analysis it can be concluded that it is always possible for a given "initial 
point" in the neighborhood of the specular reflected caustic situated in the interior (conversely 
at the exterior) of the specular focal zone, to determine a corresponding "image point" that 
belongs to the nonspecular reflected beam situated at the exterior (conversely in the interior) 
of the nonspecular focal zone. In this case, three stationary points (conversely a single statiom 
ary point) correspond to the initial point, and a single stationary point (conversely three sta- 
tionary points) corresponds to the image point. 

As an example, consider two points, M], and ~/I~, situated at the exterior and in the neigh- 
borhood of the specular reflected caustic (as shown in Fig. 9a), near which passes a single ray. 
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Fig. 9a. Points M1 (with Ai < 0) and M2 (with Ai > 0) outside the specular reflected beam. The point M2 
is located inside the nonspecular reflected beam; b Point M1: Location of the three roots of H in the com- 
plex plane. Case similar to Fig. 8f; e Point M~: Location of the three roots of f / i n  the complex plane. 
Case similar to Fig. 8g 

The incidence of the beam is assumed to be near the Rayleigh angle. In order to calculate the 
image points M1 and M2 it must be considered that the corresponding ray will be slightly 
modified according to Eq. (32). 

(a) From the point M1 passes a ray with an angle far from the Rayleigh angle. From the 
corresponding image point will still pass a single ray. The positions of the complex roots of f r 
are shown in Fig. 9b. In this case, the corresponding roots to the initial point are: one real 
root (i.e., a single stationary point) and two complex roots situated far from the area of influ- 
ence of the Rayleigh pole (as shown in Fig. 8), which implies that these roots will not be dis- 
placed and hence they will not become real. 

(b) From the point M2 passes a ray with an angle near Rayleigh angle. Therefore, three 
rays will pass from the corresponding image point. The positions of the complex root of f~', 
are shown in Fig. 9c. In this case, the corresponding roots to the initial point are: one real 
root and two complex roots situated near the area of influence of the Rayleigh pole (as shown 
in Fig. 8), which implies that after a slight displacement they may become real. It can be con- 
cluded that, in this case, the image point could be situated in the interior of  the nonspecular 
reflected caustic even if the initial point was located outside the speular caustic. This will result 
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Fig. 10. Schematic representation of 
the distortion of the reflected caustic 
showing the lateral and axial displace- 
ments of the focal point, and the curva~ 
ture of the acoustic axis of the reflected 
beam. The specular reflected caustic is 
shown in broken line and the nonspe- 
cular caustic in solid line 

in a distortion of the caustic of the reflected beam. The caustic will be displaced to the right, 
and a curvature of the acoustic axis will occur (as shown in Fig. 10). In region I (where the 

point Mt is situated) the gradient of the acoustic pressure will be lower than its values pre- 
dicted by geometrical acoustics. In region II (where the point 3//2 is situated) the gradient of 

the acousitc pressure will be greater than its value predicted by geometical acoustics. For this 
reason an asymmetric variation of the reflected pressure field around the axis is observed [8], 
[13]. These nonspecular phenomena have been verified experimentally in a previous work [7]. 

It is clearly shown from the analysis presented above that the nonspecular reflection of a 
focused beam is related to the phase part of the reflection coefficient. Nonspecular phenom- 
ena related to the reflection of focused beams are linked to the generation of a Rayleigh wave 

that is associated to a singularity near the real axis. The Rayleigh singularity zone on the real 
axis is displaced depending on the angle of incidence, therefore, for different angles of inci- 
dence the Rayleigh singularity zone will influence different parts of the reflected beam, in a 
way that there will always be distortion of a part of the reflected field. This local distortion of 
the reflected focused beam occurs for all the angles of incidence. In particular, for an inci- 
dence at the Rayleigh angle, where the real singularity is situated at zero, the distorted part of 
the reflected beam will include the region around the focal point together with a part of the 
caustic near the focal point. 

The nonspecular phenomena that occur in the case of the reflection of a focused acoustic 
beam from a liquid-solid interface can be summarized as follows: 

(a) For a beam incident near the Rayleigh angle, and if at least one ray passes from an 
observation point of the reflected beam at an angle (with the interface) near the Rayleigh 
angle, the corresponding acoustic pressure at this point will be modified with respect to its 
specular value. In other words, nonspecular reflection occurs for all physical points for wich 
at least one stationary point remains in the neighborhood of zero (note that the real part of 
the Rayleigh pole in the (z', z ~) coordinate system is equal to zero, for an incidence of the 
beam equal to the Rayleigh angle). Among the points of the physical space concerned here 
are (see Fig. 10): 

- A region around and on the focal point (for which three stationary points are equal to 
zero); the corresponding nonspecular phenomena include lateral and axial displacements of 
the specular reflected focal point. 

- A region around and on the part of  the caustic situated near the focal point (were three sta- 
tionary points are near zero); the coresponding nonspecular phenomena include distortion 
of the causic, spreading of the reflected beam, and asymmetric variation of the acoustic 
pressure around the reflected caustic. 
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- A region around and on the acoustic axis (for which on stationary point is always equal to 
zero); the corresponding nonspecular phenomena include curvature of the acoustic axis. 

It should be noted that there always exist points of the reflected beam, to which a set of 
stationary points situated far from zero can be associated. The acoustic pressure at these 
points will be specular in spite of the fact that the beam is incident at an angle in the neighbor- 
hood of the Rayleigh angle. 

(b) In the case of an incidence far from the Rayleigh angle, the real part of the Ray- 
leigh pole will be far from zero. Therefore, points like the focal point (for which three sta- 
tionary points are equal to zero) will now be reflected specularly. However, points of the 
reflected field always exist for which at least one stationary point remains in the neighbor- 
hood of the new real part of the Rayleigh pole (which is different from zero). The reflected 
field at these points will be nonspecular (modified with respect to values predicted by geo- 
metric acoustics), in spite of an incidence far from the Rayleigh angle. An example of this 
case is a part of the caustic situated far from the focal point that will be reflected nonspe- 
cularly. 

4.2 Case of  a parallel reflected beam 

In the case of the reflection of a parallel beam, considering the coordinate system (z I, zt), the 
single saddle-point moves on the imaginary axis, Im f~,], hence it passes necessarily through 
the pole @, (as shown in Fig. 2). The Rayleigh pole is a singularity in the complex plane linked 
to the leakage of a Rayleigh surface wave in the liquid. In the case, nonspecular phenomena 
are related to the singulartiy of the modulus of the reflection coefficient (when/~x, = @', then 
[R I ~ ee). This is justified by the presence of the complemantary error function, erfc[7 - kp'l, 
in the analytical expressions of the reflected pressure field (see Eq. (10)). This term does not 
exist in the expression of the reflected pressure of a focused beam. 

Nonspecular phenomena related to the "phase phenomenon" also exist in the case of the 
reflection of a parallel beam, but they are negligible compared to nonspecular phenomena 
related to the "amplitude phenomenon". By expressing the reflection coefficient, R(k~,), in 
terms of modulus #(/~,) and phase ~(kz'), the Fourier integral in Eq. (4) which describes the 
pressure field of a reflected parallel beam in the (x', z') coordinate system can be written in the 
form: 

+ c o  

J)  = c f + (39) 
--OO 

where ft. (/~z') is given by Eq. (5), and 

H ( s  - ( 4o )  
(k )2 �9 

It can be observed that in the case of the reflection of a parallel beam the term H(k~,), 
which could produce nonspecular phenomena related to the "phase phenomenon", is negli- 
gible; for ka >> i ~ H(k~,) << fr(k~,). Note that in the case of the reflection of a focused 
beam (where the "phase phenomenon" is predominant) the term related to nonspecular 
reflection is inversely proportional to (ka), as it is obvious from Eq. (30). Also, in the case 
of a focused beam, when the saddle-point(s) is (are) displaced, the derivative of the phase of 
the reflection coefficient, ep(~,), varies a lot more rapidly than in the case of a parallel 
beam [13]. 
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4.3 Remark on the influence of the liquid-solid interJace on the nonspecular reflection of acoustic 
beams 

The analysis presented in this paper that led to the quantification of nonspecular phenomena 
was based on the condition shown in Eq. (29). In the context of the short wave hypothesis, 
ka >> 1, and by taking Eq. (29), into accound it is obvious that for a given value of (ka) non- 

specular phenomena occur when the condition 0 << ~ is satisfied. This leads to the conclusion 
that the higher the attenuation of the Rayleigh waves is, the less significant will be the nonspe- 
cular phenomena. However, for a given interface (~/~)~ is fixed), the significance of nonspecu- 
lar phenomena is inversely proportional to (/m), see Eqs. (29), (30) and (38). In other words, 

the higher the ultrasonic frequency (which corresponds to higher attenuation of Rayleigh 
waves in the solid) is, the less significant will be the nonspecular reflection of the beam. 

5 Conclusions 

This paper presents a study of the structure of the acousitc field when a Gaussian beam (par- 

allel or focused) is reflected from a plane liquid-solid interface. The incident beam is modeled 
by a plane-wave decomposition using the Fourier integral representation. The reflected pres- 
sure field is described in a coordinate system corresponding to the emitter. In this convenient 
system, the expression of the phase function can be simplified in a way that the roots of its 
first derivative (called saddle-points) can be expressed in an analytical form. The reflected 

pressure itegral is then evaluated by means of asymptotic analysis using the steepest descent 
method in the case of a parallel reflected beam, or the stationary phase method in the case of 
a focused reflected beam. This asymptotic analysis is based on the short wave hypothesis, and 
an analytical, uniformly valid expression for any angle of incidence can be obtained finally. 

In the case of a focused beam, a modification of the structure of the reflected field with 
respect to values predicted by geometric acoustics was observed for any angle of incidence. In 
particular, for an incidence in the neighborhood or equal to the Rayleigh angle, nonspecular 
phenomena involve a part of the caustic of the reflected beam including the focal point, and 
the entire acoustic axis. Simple expressions of the axial and lateral displacements of the focal 
point were obtained leading to numerical quantification of the phenomena. These analytical 
results are in agreement with experimental data reported in the literature [7]. 

The study of the reflection of a parallel beam enables one to compare the nonspecular 
reflection of focused and unfocused beams. It was found that in the case of a parallel beam 
the mechanism of nonspecular reflection is different from the case of a focused beam as it is 
summarized below: 

(i) When a parallel ultrasonic beam is reflected from a liquid-solid interface (and in the 
context of geometric acousitcs), all energy (except the small quantity of diffracted energy) 
falls at the interface at the Rayleigh angle. Hence, generation of a Rayleigh surface wave 
occurs, and part of its energy is leaking back in the liquid producing the "amplitude phenom- 
enon". In this case, the leakly Rayleigh wave is the principal mechanism of the wellknown 
related nonspecular phenomena. 

(ii) However, in the case of a focused beam, only a part of the energy falls onto the inter- 
face at the Rayleigh angle. The abrupt variation of the phase of the reflection coefficient in 
the neighborhood of the Rayleigh angle causes a local modification of the reflected beam. 
Here, the "phase phenomenon" is more important than the reradiation of a leaky Rayleigh 
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wave in the liquid. The same "phase phenomenon"  is also present in the case o f  the reflection 

of  a parallel  beam, but it is much less significant than the "ampl i tude  phenomenon" .  Further ,  

for a focused beam, a number  of  rays always fall onto the interface at the Rayleigh angle even 

if  the beam incidence is far from the Rayleigh angle. F o r  this reason, there will always be 

areas of  the reflected focused beam that  are distorted. 
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